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Abstract
Allergic diseases are chronic inflammatory disorders in which there is failure to
mount effective tolerogenic immune responses to inciting allergens. The
alarming rise in the prevalence of allergic diseases in recent decades has
spurred investigations to elucidate the mechanisms of breakdown in tolerance
in these disorders and means of restoring it. Tolerance to allergens is critically
dependent on the generation of allergen-specific regulatory T (Treg) cells,
which mediate a state of sustained non-responsiveness to the offending
allergen. In this review, we summarize recent advances in our understanding of
mechanisms governing the generation and function of allergen-specific Treg
cells and their subversion in allergic diseases. We will also outline approaches
to harness allergen-specific Treg cell responses to restore tolerance in these
disorders.
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Introduction
Regulatory T (Treg) cells play a key role in the maintenance of 
immunological self-tolerance and in restraining deleterious 
immune responses to both self and foreign antigens1. Treg  
cell–mediated tolerance is an active process that requires antigen  
specificity2,3 and this dependence on antigen recognition by  
Treg cells for their regulatory function can be harnessed to  
provide promising approaches for immunotherapy of diseases  
such as allergy and autoimmunity.

Sakaguchi et al. originally described a population of CD4+  
T cells expressing the cell surface marker CD25—interleukin-2 
(IL-2) receptor alpha chain—that maintained peripheral immuno-
logical tolerance in mice. The deficiency of these cells engenders 
autoimmunity4. The discovery of a key role for the transcription 
factor Forkhead Box P3 (FOXP3) in controlling the differentia-
tion and functions of CD4+CD25+ Treg cells provided an essential  
molecular framework for elucidating their physiological  
functions5. It is now appreciated that Treg cells have a broader 
function than previously thought. In addition to maintaining  
tolerance to self-tissues, Treg cells are implicated in sustaining 
tolerance to fetal and transplanted tissues and in promoting tissue 

repair6–9. Furthermore, Treg cells promote tolerance to components 
of the ‘extended self’, encompassing the commensal microbiota 
and innocuous agents such as nutrients and other environmental  
exposures10,11. Although additional Foxp3– Treg cell populations 
have been described12, this review is focused on CD4+CD25+Foxp3+ 
Treg cells, the most well-characterized subset of Treg cells whose 
deficiency in both humans and mouse models precipitates lethal 
autoimmunity and inflammatory disorders.

What are the niches that promote antigen-specific 
regulatory T cells formation?
There are two major subtypes of CD4+Foxp3+ Treg cells13. The  
first encompasses thymic or natural Treg (nTreg) cells, which  
originate as a separate cell lineage during T-cell development in 
the thymus (Figure 1)14,15. The second type includes peripheral 
or induced Treg (iTreg) cells that differentiate from conventional  
T (Tconv) cells in specialized extra-thymic niches16–20 (reviewed  
in 18). nTreg cells are biased toward immune recognition of  
self-antigens, whereas iTreg cells are biased toward recognizing  
non-self-antigens, reflecting their derivation from Tconv  
cells18,21. The two subtypes are complementary in their actions  
in promoting peripheral tolerance22–24.

Figure 1. Generation of natural regulatory T (nTreg) and induced Treg (iTreg) cells. Schematic representation of nTreg and iTreg cell 
developmental pathways. Naturally occurring Treg cells develop upon intermediate-avidity interaction between developing thymocytes and 
self-antigen-presenting medullary epithelial cells. High-level expression of Neuropilin (Nrp-1) and Helios is maintained on nTreg cells after 
their migration from the thymus. Naïve conventional T cells that have undergone positive and negative selection in the thymus and have 
low avidity for self-antigens may develop into iTreg cells upon encountering antigens presented by tolerance-inducing antigen-presenting 
cells in specialized niches in the periphery. These cells express low levels of Helios or Nrp-1. Both nTreg and peripheral Treg cells are able 
to suppress CD4+ effector helper T 2 (TH2) cell responses. High-avidity T-cell receptor interaction in the thymus results in cytolytic T cells 
(negative selection). DP, double positive; IRF4, interferon gamma regulatory factor 4.
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nTreg cells emerge late in the double-positive stage of thymocyte  
development25, and the majority of nTreg cells segregate into  
CD4 single-positive mature thymocytes21. The maturation of  
nTreg cells from thymocytes requires T-cell receptor (TCR)- 
dependent signals delivered upon its engagement by major  
histocompatibility complex (MHC) II molecules on specialized  
antigen-presenting cells26, most notably medullary thymic  
epithelial cells27,28. Whereas high-avidity TCR/MHC interactions  
induce negative selection29,30 and low-avidity interactions favor  
thymocyte maturation and egress as conventional naïve T cells, 
intermediate- avidity interactions favor FOXP3 expression and 
the differentiation of thymocytes into nTreg cells (Figure 1)31–33. 
The TCR repertoire expressed by nTreg cells is broad and dis-
tinct from Tconv cells. It is enriched in self-reactive TCRs that  
otherwise would have been eliminated in Tconv cells34,35.

iTreg cells are generated in specialized niches particularly at 
the environmental interfaces, including the gut and lung20,36. 
These niches are endowed with specialized antigen-presenting 

cells—including CD103+CD11c+ dendritic cells in the gut and 
alveolar and interstitial macrophages in the lung—that polarize 
antigen-responsive T cells into iTreg cells under the influence of  
transforming growth factor beta 1 (TGF-β1) and retinoic acid  
produced by the antigen-presenting cells (Figure 2)37–41. In the  
intestine, iTreg cells develop primarily in response to the gut  
microbiota and food antigens, enabling tolerance to both sets of  
foreign antigens42–44. In germ-free (GF) mice, colonic Treg cells  
generated in the periphery (iTreg cells) are greatly reduced in  
numbers, reflecting the critical role of colonic bacteria in promot-
ing colonic Treg cell development45. In contrast, GF mice appear 
to have normal numbers of iTreg cells in the small intestine46. Kim 
et al. reported that under normal physiological conditions, proteins  
from a typical diet lead to iTreg cell generation in the small  
intestine but not in the colon11. They found that phenotypically  
and functionally distinct iTreg cells in the lamina propria  
of the small intestine develop after weaning to suppress strong 
immunological reactions in response to dietary antigens in solid  
food. These iTreg cells are important for the maintenance of 

Figure 2. Mucosal tolerance in the gut and its breakdown in food allergy. (Left) Under homeostatic conditions, CX3CR1+ macrophages 
sample components of the gut lumen and transfer luminal antigens to IRF8+CD103+ dendritic cells (DCs), which in turn promote the formation 
of antigen-specific induced regulatory T (iTreg) cells. iTreg cells expressing retinoid-related orphan receptor gamma t (RoR-γt) may regulate 
tolerance to dietary antigens by a range of mechanisms, including the suppression of mast cell activation. iTreg cells may also prevent the 
conversion of naïve CD4+ T cells to antigen-specific helper T 2 (TH2) cells. (Right) Under food allergic conditions, CD11b+CD103– DCs 
encounter allergens that are made more accessible by a permeable epithelial barrier. Allergen-presenting DCs drive the differentiation of 
naïve T cells into allergen-specific TH2 cells expressing the interleukin-4 receptor (IL-4R). iTreg cells also acquire a TH2 cell-like phenotype 
characterized by increased GATA3 and IRF4 expression and the release of IL-4 and IL-13. These ‘pathogenic’ Treg cells are unable to 
suppress mast cell activation through engagement of the OX40-OX40 ligand pathway. Binding of IgE to the high-affinity receptor for IgE 
(FcεRI) leads to uninhibited mast cell degranulation and IL-4 production. IRF8, interferon gamma regulatory factor 8; SCFA, short-chain fatty 
acid; TGFβ, transforming growth factor beta.

Page 4 of 13

F1000Research 2018, 7(F1000 Faculty Rev):38 Last updated: 11 JAN 2018



immune tolerance at mucosal surfaces. Compared with nTreg  
cells, they express lower levels of the markers Neuropilin-1 and 
Helios and higher levels of the retinoid-related orphan receptor 
gamma t (RoR-γT)11.

The lung is another important site for the induction of antigen- 
specific Treg cells20,47,48. Although alveolar macrophages are  
defective in their capacity to activate T effector (Teff) cells, 
they are particularly adept at driving the differentiation of naïve  
allergen-specific T cells into iTreg cells in a TGF-β1- and  
retinoic-dependent manner37,38. Similar to that of the gut, the  
microbiota of the lung has been implicated in promoting airway  
tolerance to allergens early in life by enabling the production of  
allergen-specific induced Treg cells49. High frequencies of 
Treg cells targeting innocuous environmental aero-antigens 
(such as house dust mite or plant pollen) have been reported in 
human adult peripheral blood mononuclear cells but are absent 
in cord blood, suggesting that Treg cell expansion is specific 
to antigen encounter in the periphery50. Aero-antigen-targeted  
responses were also found to be less pronounced in Tconv cells 
as Treg cells outnumbered effector memory T (TM) cells and 
expressed chemokine receptors essential for lung homing50.

Feedback mechanisms from the peripheral niches in the form 
of local tissue factors have been shown to regulate the function 
of Treg cells. In the skin, the pro-inflammatory cytokine thymic 
stromal lymphopoietin (TSLP) produced by keratinocytes acts to 
activate Treg cells to contain skin inflammation locally and pre-
vent its systemic spread51. Deletion of TSLP receptor (TSLPR) 
signaling specifically on Treg cells prevented the upregulation 
of genes, including Icos and Ctla4, that mediate their regulatory 
effects and consequently restricted the capacity of Treg cells to 
inhibit skin effector T cells and prevent the progression of local skin 
inflammation systemically.

Treg cell memory
One of the key features of adaptive immunity is the ability to 
respond effectively and more rapidly to antigens that have been 
encountered previously. A subset of clonally expanded Teff  
cells differentiate into long-lived TM cells that are particularly 
adept at mounting recall responses upon re-exposure to antigens/
pathogens52. TM cells are endowed with long-term epigenetic, 
transcriptional, and metabolic changes that enable their long-term 
survival and rapid response to recall challenges53. The concept of 
Treg cell memory has been controversial as a long-lasting increase 
in suppressive function that persists after the resolution of the  
primary antigenic exposure could severely suppress recall Teff 
cell responses and lead to persisting immuno-suppression54–57.  
Van der Veeken et al. recently found that the suppressive function  
of antigen-specific Treg cells is a transient quality58. They reported 
that inflammation-induced Treg cells reversed activation-specific 
transcriptional changes and reduced suppressive function with 
time. These changes were associated with stable chromatin modi-
fications that facilitate reactivation and long-lasting preference 
for non-lymphoid tissue localization. Rested Treg cells exhibited  
a gene expression signature similar to that of conventional  
TM cells that was not affected by secondary activation58.

In contrast to the above results, other studies on Treg cell responses 
have supported the concept of Treg cell memory. Rosenblum et al. 
investigated Treg cell responses in the skin by generating transgenic 
mice that expressed a model antigen in keratinocytes59. The model 
antigen was regulated in the skin but only constitutively expressed 
in the thymus and the expression could be silenced to assess  
antigen-specific TM cells without prolonged exposure to antigen.  
This system revealed that the thymic constitutive expression 
allowed the expansion of a large subset of antigen-specific Treg 
cells that spread to secondary lymphoid organs. The induction of 
antigen in the skin induced potent proliferation of antigen-specific 
Treg cells and increased expression of CTLA-4 before migrating  
to the skin to ameliorate antigen-specific effector T-cell inflamma-
tion. After antigen expression was switched off, a subset of Treg 
cells expressing CTLA-4 persisted and upon antigen re-exposure 
inflammation was attenuated much more rapidly compared with 
the primary response59. Treg cell depletion between primary and 
secondary exposure saw no protection from inflammation. Overall,  
these results are relevant to therapeutic applications aimed at  
boosting tolerance responses, such as immunotherapy for allergic 
diseases (see below).

What is the role of antigen-specific Treg cells in 
allergic diseases?
Allergic responses arise in the context of failure to develop toler-
ance toward specific allergens. These conditions are marked by  
the production of allergen-specific IgE and the development of 
CD4+ TH2 skewed cell responses (Figure 2)60. Conditions that 
impact the differentiation of allergen-specific Treg cells can give 
rise to allergic disorders60. For example, human subjects with  
loss-of-function mutations in FOXP3, whose Treg cells fail to  
appropriately differentiate into effective suppressors, develop an  
X-linked disorder of immune dysregulation and autoimmunity61–63. 
A similar phenotype is recapitulated in mice with mutations in 
Foxp364–67. Human subjects with FOXP3 deficiency suffer from 
associated severe allergic inflammation and develop food allergy 
(FA) due to loss of oral tolerance. In mice, manipulations that 
deplete or inhibit allergen-specific Treg cells also result in the 
loss of tolerance and the development of allergic responses to said 
allergen68. In human subjects, Treg cells of children with FA fail to 
suppress responses to the causative food allergens, whereas those 
of children who outgrow FA develop allergen-specific suppressive 
capacity68.

Derangement of antigen-specific Treg cell responses 
in allergic diseases
Oral tolerance is specifically associated with the development of 
iTreg cells from naïve CD4+ T cells that are activated in the pres-
ence of TGF-β1 and CD103+ classic dendritic cells in the gut that 
express interferon gamma regulatory factor 8 (IRF8) (Figure 2)41,69. 
At steady state, macrophages expressing the CX3C chemokine 
receptor 1 (CX3CR1) sample luminal antigens, including food 
and microbiota components, by projecting dendrites through the  
epithelial barrier into the gut lumen70–72. CX3CR1+ macrophages 
transfer the luminal soluble antigen to CD103+ dendritic cells, 
which in turn induce oral tolerance to said antigens by promoting 
the generation of antigen-specific iTreg cells (Figure 2)73. iTreg 
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cells regulate TH2 immune responses at mucosal surfaces, are less  
stable, and exhibit more plasticity than thymic-derived nTreg 
cells74,75. Noval Rivas et al. showed that, in a mouse model of 
FA marked by IgE-mediated anaphylaxis, the generation of  
antigen-specific Treg cells was inhibited by increased IL-4  
receptor (IL-4R)-STAT6 signaling68. The mice in question, Il4raF709 
mice, carry a gain-of-function mutation in the IL-4Rα chain76. They 
mount exaggerated TH2 responses and are particularly susceptible 
to oral sensitization and anaphylaxis77. The antigen-specific Treg 
cells that did develop underwent TH2 cell reprogramming marked 
by increased expression of IL-4, IL-13, IRF-4, and GATA-3 when 
compared with those from wild-type (WT) mice, a phenomenon 
also observed in human subjects with FA (Figure 2). The impaired 
induction of food allergen-specific iTreg cells paralleled the  
excessive IL-4R signaling and could be reversed by the deletion of 
Stat6.

GATA-3 plays a key role in Treg cell homeostasis, acting to pre-
vent polarization to TH17 cells78,79. Under physiological conditions, 
TH cell reprogramming is restrained and is lost in the presence  
of increased STAT6 signaling, thereby contributing to the  
pathogenic reprogramming of Treg cells into TH2-like cells68. 
Treg cell lineage-specific deletion of Il4 and Il13 genes abrogates  
the induction of FA, thus confirming that IL-4 production by  
TH2 cell-like reprogrammed Treg cells directly contributes to  
allergic disease68. The in vitro suppression of mast cell activation 
by antigen-specific Treg cells was abrogated in the presence of  
IL-4 but reversed with the deletion of Stat6 in Treg cells. This is 
supported by previous reports that the suppression of mast cell 
activation and IL-4 production restores tolerance and promotes  
the induction of Treg cells80. Although the programming of iTreg 
cells into TH2 cell-like cells is pathogenic in FA, it may serve  
physiological purposes under other circumstances. For example, 
intense IL-4/IL-4R signaling in the context of helminth infections  
has been reported to drive the development of TH2 cell-like  
ex-Treg cells, which contribute to immunity to nematodes81.

The above concepts of iTreg cell suppression and pathogenic  
reprogramming into Teff-like cells, developed in the context of 
FA, have been extended to encompass the pathogenesis of other 
allergic diseases such as asthma. The frequencies of suppressive 
allergen-specific Treg cells trend higher in healthy controls as  
compared with asthmatics82. Importantly, there is evidence of  
pathogenic reprogramming of Treg cells toward effector  
phenotypes that contribute to asthma severity83. Infection with  
respiratory syncytial virus induced a TH2 cell-like effector  
program in Treg cells and impaired their suppressive function84. 
Also, TH2 cell-like reprogramming of iTreg cells due to enhanced 
STAT6 activation via the IL-4Rα in Il4raF709 mice is associated  
with intense TH2 cell-skewed allergic airway inflammation. 
Other Treg cell pathways have also been implicated in the regu-
lation of the TH2 cell response in allergic airway inflammation.  
Deletion of the beta subunit of casein kinase 2 (CK2) resulted 
in the proliferation of a Treg cell subpopulation characterized  
by the expression of the inhibitory receptor ILT3 (also known  
as gp49B). This Treg cell population was unable to control the  
maturation of dendritic cells expressing both the transcription  
factor IRF4 and the programmed cell death ligand 2 (PD-L2),  
which drove the development of lung TH2 responses85.

More recently, we described a novel mechanism involving a 
common asthma-promoting human IL-4Rα chain variant, by 
which allergen-specific iTreg cell differentiation is subverted to 
promote mixed TH2/TH17 cell inflammation, associated with 
severe, steroid-resistant asthma86. When expressed in mice, this 
variant, which contains a glutamine-to-arginine (Q-to-R) substitu-
tion at position 576 of the IL-4Rα, promotes exaggerated airway 
hyper-responsiveness and severe mixed TH2/TH17 inflammation  
when the mice are sensitized with allergens and subsequently  
challenged. The R substitution does not impact IL-4R signaling 
via STAT6. Rather, IL-4 signaling via IL-4Ra-R576 activates IL-6  
production by inducing the de novo recruitment of the adaptor 
growth factor receptor-bound protein 2 (GRB2) to the IL-4Rα86 
(Figure 3). GRB2 activates downstream MAP kinase cascades, 
including extracellular signal-regulated kinases to induce IL6 gene  
expression by activating the transcription factors nuclear factor- 
kappa B (NF-κB) and C/EBP-β and p38 MAP kinase, which  
activates IL-13 production. Newly formed antigen-specific iTreg 
cells are subsequently  destabilized by the confluence of IL-6 and 
TGF-β1 signaling, resulting in the degeneration of iTreg cells into 
TH17 cells that lack suppressive function. This derangement results 
in the over-production of both TH2 and TH17 cell responses,  
promoting severe airway hyper-responsiveness and inflammation. 
Exaggerated allergic inflammation in Il4raR576 mice was reversed 
when Treg cells differentiating into TH17 cells were inhibited  
by either treatment with an anti-IL-6 antibody or Treg cell- 
specific deletion of genes that regulate TH17 cell differentiation, 
including Rorc (encoding the TH17 master transcription factor 
RoR-γt) and Il6ra, encoding the IL-6Rα chain86.

Downstream abnormalities in allergen-specific Treg cells involving 
immunomodulatory cytokines, including IL-10 and TGF-β, may 
also contribute to the pathogenesis of allergic diseases. Rubtsov 
et al. deleted IL-10 in Treg cells and showed increased severity 
of allergic airway inflammation suggesting that IL-10 production 
by Treg cells is critical for the induction of immune tolerance87. 
TGF-β production by Treg cells also contributes to the regulation 
of the immune response88. The role of altered Treg cell production 
of IL-10 and TGF-β in the pathogenesis of allergic diseases and 
the underlying mechanisms for such alterations remain to be fully 
elucidated.

Antigenic specificity of allergen-specific Treg cells
The possession by nTreg cells of a distinct TCR repertoire,  
confirmed by several studies22,34,89,90, suggests that they may  
recognize a distinct set of peptide antigens as compared with 
Tconv cells91. Furthermore, nTreg and iTreg cells exhibit distinct 
TCR repertoires, which may broaden the scope of antigens rec-
ognized collectively by the two Treg cell populations underlying 
their synergistic function in maintaining peripheral tolerance22,92. 
More recently, evidence was presented that TCR of iTreg cells  
may recognize peptide-MHC class II complexes with a reversed 
polarity as compared with the TCR of Tconv cells, again  
suggesting the potential for altered recognition of a distinct set 
of peptide antigens as compared with TCR of Tconv cells93. The  
allergen specificity of Treg cells in humans has recently been 
mapped by simultaneously quantifying and characterizing  
allergen-reactive enriched T cells. Using this approach,  
Bacher et al. identified a population of peripherally expanded,  
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stable Treg cells specific to innocuous aero-antigens in all allergic  
subjects50. This subset of Treg cells served to maintain active  
tolerance as there was no corresponding clonally expanded high 
avidity-selected Tconv cell response in healthy controls. Whereas 
the authors did not address the suppressive influence of these  
antigen-specific Treg cells on TH2 induction in humans, previous 
mouse studies support this function.

Allergen-specific Treg cells and the microbiome
Substantial increases in the prevalence of allergic/atopic disease 
have been attributed to environmental factors coupled with genetic 
susceptibility. The hygiene hypothesis states that recent increases 
in the prevalence of allergic diseases are caused by reduced 
microbial exposure early in age due to the use of antibiotics and 
improved hygiene (more sterility)94–96. Microbial colonization of 
neonates is initiated at birth, and the microbiotic composition of 
vaginally delivered infants is similar to that of the mother’s vagina.  

However, infants born by caesarean section obtain their micro-
biota from maternal skin and have been shown to have higher  
incidences of asthma and allergy97–99. The direct role of the  
microbiota in the development of allergen-specific responses is  
evident in GF mice that cannot be tolerized to oral antigens100.  
We recently demonstrated that the development of FA is correlated  
with dysbiosis in a mouse model of allergic dysregulation101.  
Food allergic Il4raF709 mice exhibited reduced abundance in  
members of the Firmicutes phylum and an increase in Proteo-
bacteria phylum as compared with WT mice. The transfer of  
allergen-specific Treg cells blocked the development of allergic 
responses in mice while also preventing the food allergic dysbiosis 
observed in control mice101.

Although the mechanisms by which the microbiota direct the dif-
ferentiation and function of allergen-specific Treg cells remain  
to be fully elucidated, progress has been made in identifying  

Figure 3. Induced regulatory T (iTreg) cell subversion by the asthma-promoting IL-4Rα-R576 variant. Schematic representation of 
pathways mediating iTreg cell subversion by the asthma-promoting IL-4Rα-Q76R variant. The glutamine to arginine substitution at position 
576 of IL-4Rα chain allows recruitment of the protein adaptor GRB2 upon receptor activation. GRB2 activates downstream MAP kinase 
cascades, including extracellular signal–regulated kinases, which drive IL-6 production by activating the transcription factors NF-κB and 
C/EBP-β, and p38 MAP kinase, which activates IL-13 production. Newly formed antigen-specific iTreg cells are subsequently destabilized, 
resulting in the generation of excessive TH2 and TH17 cell responses that promote severe airway hyper-responsiveness.
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potential pathways involved. Commensal bacteria induce the  
expression in iTreg cells of the transcription factor RoR-γt102,103. 
Ohnmacht et al. proposed that RoR-γt iTreg cells may regulate 
allergic diseases by restraining TH2 cell-mediated responses in 
the gut by a CTLA-4-dependent mechanism102. Other studies have 
implicated short-chain fatty acids, including acetate, propionate, 
and butyrate, produced by commensals such as Clostridial species 
in stabilizing Treg cells in the gut104–106. Other microbiotic products  
could also be directly influencing iTreg cell differentiation and  
function in the gut. Bacteroides fragilis is a commensal bacteria  
that has been found to promote the upregulation of Foxp3+ Treg 
cells using its product, polysaccharide A (PSA), to signal through  
Toll-like receptor 2 in T cells107–109. B. fragilis lacking PSA was  
unable to maintain tolerance induction and upregulated TH17 
cell differentiation110. Failure of MyD88-dependent signaling in  
Treg cells severely restricted the evolution of antigen-specific  
Treg cell responses in the gut, consistent with the action of micro-
biotic products through innate immune signaling mechanisms in  
Treg cells promoting their expansion and function111. The loss of 
these and other mechanisms through dysbiosis may compromise  
the development of Treg cells in FA and other gut dysbiotic  
disorders.

Resetting pro-inflammatory antigen-specific Treg 
cells to promote tolerance in human subjects
The plasticity of Treg cells becomes a critically relevant issue 
when contemplating interventions aiming to employ Treg cells 
in cellular therapies or to promote Treg cell function in chronic 
inflammatory and autoimmune disorders. Because of the instabil-
ity of Foxp3 expression in Treg cells, especially iTreg cells, under 
intense inflammatory conditions, these cells may acquire Teff 
cell phenotypes and express TH cytokines relevant to the ongo-
ing immune response112. In extremis, they may lose their Foxp3 
expression to become pathogenic Teff cell-like ex-Treg cells113. In 
that regard, therapies that neutralize key inflammatory cytokines 
have been shown to promote Treg cell stability and function under 
inflammatory conditions. For example, in experimental models of 
chronic inflammatory disorders, including arthritis and asthma, 
treatment with anti-IL-6 or anti-tumor necrosis factor (anti-TNF) 
monoclonal antibodies appears to enhance Treg cell stability 
and function114,115. Genetic manipulations of iTreg cells aimed 
to improve their stability when employed in cellular therapies  
may prove useful in enabling effective use of these therapies in 
inflammatory disorders. Conversely, therapies that are currently 
used in other indications to block Treg cell function such as  
anti-CTLA-4 and anti-PD-1 antibodies in cancer116 may predispose 
patients to allergic diseases by inhibiting and destabilizing Treg 
cells, especially iTreg cells.

The induction of antigen-specific Treg cells is particularly relevant 
to allergen-specific immunotherapy, which aims to reduce the  
allergic symptoms and maintain a long-term tolerance to aller-
gen exposure117. It typically consists of gradual introduction of  
escalating doses of the offending allergen, leading to a state of  
allergen desensitization and ultimately, when successful, to a state  
of long-term tolerance that persists upon discontinuation of  
immunotherapy. A case in point is oral immunotherapy (OIT) for  
FA, which has the potential to modify disease outcome and, in  

some cases, provide a long-term cure. OIT may impact the responses 
of allergen-specific T cells by (a) reversing the TH2 phenotype of 
Teff cells or inducing their deletion or both and (b) upregulating 
the effectiveness of allergen-specific Treg cells118. Foxp3 Treg  
cells and induced type 1 Treg cells have both been implicated in 
clinical effectiveness of OIT119. For example, a role for peanut- 
specific Treg cells has been demonstrated in peanut-allergic  
patients successfully treated with OIT. Syed et al. reported an 
increase in antigen-specific Treg cells in patients who reacted well  
to treatment compared with those who failed to tolerize120. These  
Treg cells were characterized with increased suppressive behavior 
and epigenetic modifications within the Foxp3 locus. Similarly,  
we observed an initial decline in Treg cells when first treated  
with OIT supplemented with anti-IgE therapy that were recovered 
over time as the patients were desensitized (Abdel-Gadir et al.,  
manuscript submitted)121,122. Recovered Treg cells had increased 
suppressive  function and reduced production of IL-4. Blockade  
of IL-4R signaling appeared to rescue the suppressive function 
of peanut-specific Treg cells isolated from untreated patients  
(Abdel-Gadir and Chatila, manuscript submitted). These findings 
suggest a  possible role for IL-4R signaling blockade as an adjunct 
therapy in promoting long-term tolerance in OIT.

Notwithstanding these encouraging results, OIT has had varying 
success in conferring long-term tolerance—defined as tolerance to 
the ‘offending’ food for up to six months after cessation of daily 
OIT—in patients with FA123. Moran et al.121 and Sicherer122 both 
report that long-term tolerance is achieved in only 13 to 28% of 
OIT-treated patients. The reasons for these limited long-term  
successes remain obscure but may have to do with the persistence  
of a pro-TH2 inflammatory environment in the gut that promotes  
the reemergence of disease upon cessation of therapy. Adjunct 
efforts that attempt to limit TH2 inflammation either by neutraliz-
ing effector TH2 molecules or by employing immunomodulatory 
bacterial therapies that promote Treg cell stability in the face of 
inflammation may be effective in increasing the rates of long-term 
tolerance acquisition in this disorder.

Patch-based immunotherapy has recently been employed as an 
alternative approach to OIT in inducing allergen-specific oral  
tolerance in FA. Tordesillas et al. used a non-oral desensitization 
route involving epicutaneous antigen delivery and showed that 
mice thus treated were protected from FA-related anaphylaxis124. 
A population of gut-homing (tissue-specific) Treg cells that lacked 
Foxp3 protein but expressed latency-associated peptide was found 
to be selectively expanded, and these Treg cells did not suppress  
IgE production but inhibited mast cell activation. This report  
showed that skin-gut immune interaction is important for the  
induction of long-term oral tolerance in FA.

Future directions
It is now clear that antigen-specific Treg cells play a key role in 
mediating peripheral tolerance to specific allergens in healthy indi-
viduals, but there are many questions left unanswered. First, the 
molecular mechanisms underlying the generation of pathogenic 
TH2 cell-skewed Treg cells in the periphery remain to be fully 
deciphered. Elucidating such mechanisms would enable thera-
peutic interventions that ‘reset’ the TH2 cell-like reprogramming  

Page 8 of 13

F1000Research 2018, 7(F1000 Faculty Rev):38 Last updated: 11 JAN 2018



of allergen-specific Treg cells to promote their tolerogenic  
functions68. Such a reset may be further extended to cellular  
therapies in which allergen-specific Treg cells are expanded from  
the peripheral blood, modified away from the TH2 cell-like  
reprogramming and subsequently transferred back to patients. 
More broadly, the environmental factors associated with changes in  
lifestyle over the last decade may foster the loss of tolerance to  
allergens and need to be more specifically mapped. Particularly 
relevant is the role of altered microbial exposure early in life 
in shaping the Treg cell response101,107. A better understanding 
of how commensal microorganisms or their metabolites influ-
ence the generation of Treg cells and how dysbiosis may impact  
allergic responses would be highly informative in this regard. Thus, 
translating these advances to more effective manipulations of the 

allergen-specific Treg cell responses may offer novel therapeutic 
approaches in allergic disorders.
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